Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.677
Filtrar
1.
J Phys Chem B ; 128(10): 2317-2325, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482666

RESUMO

Two disaccharides, methyl ß-d-galactopyranosyl-(1→4)-α-d-glucopyranoside (1) and methyl ß-d-galactopyranosyl-(1→4)-3-deoxy-α-d-ribo-hexopyranoside (3), were prepared with selective 13C-enrichment to allow measurement of six trans-O-glycosidic J-couplings (2JCOC, 3JCOCH, and 3JCOCC) in each compound. Density functional theory (DFT) was used to parameterize Karplus-like equations that relate these J-couplings to either ϕ or ψ. MA'AT analysis was applied to both linkages to determine mean values of ϕ and ψ in each disaccharide and their associated circular standard deviations (CSDs). Results show that deoxygenation at C3 of 1 has little effect on both the mean values and librational motions of the linkage torsion angles. This finding implies that, if inter-residue hydrogen bonding between O3H and O5' of 1 is present in aqueous solution and persistent, it plays little if any role in dictating preferred linkage conformation. Hydrogen bonding may lower the energy of the preferred linkage geometry but does not determine it to any appreciable extent. Aqueous 1-µs MD simulation supports this conclusion and also indicates greater conformational flexibility in deoxydisaccharide 3 in terms of sampling several, conformationally distinct, higher-energy conformers in solution. The populations of these latter conformers are low (3-14%) and could not be validated by MA'AT analysis. If the MD model is correct, however, C3 deoxygenation does enable conformational sampling over a wider range of ϕ/ψ values, but linkage conformation in the predominant conformer is essentially identical in both 1 and 3.


Assuntos
Dissacarídeos , Glicosídeos , Dissacarídeos/química , Ligação de Hidrogênio , Conformação Molecular , Glicosídeos/química , Simulação por Computador , Água , Configuração de Carboidratos
2.
J Agric Food Chem ; 72(10): 5439-5451, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412221

RESUMO

Increasing hydrogen peroxide (H2O2)-based systems have been developed to degrade various polysaccharides due to the presence of highly reactive free radicals, but published degradation mechanisms are still limited. Therefore, this study aimed to clarify the degradation mechanism of six typical glucosidic bonds from different disaccharides in an ultraviolet (UV)/H2O2 system. The results showed that the H2O2 concentration, disaccharide concentration, and radiation intensity were important factors affecting pseudo-first-order kinetic constants. Hydroxyl radical, superoxide radical, and UV alone contributed 58.37, 18.52, and 19.17% to degradation, respectively. The apparent degradation rates ranked in the order of cellobiose ≈ lactose > trehalose ≈ isomaltose > turanose > sucrose ≈ maltose. The reaction pathways were then deduced after identifying their degradation products. According to quantum chemical calculations, the cleavage of α-glycosidic bonds was more kinetically unfavorable than that of ß-glycosidic bonds. Additionally, the order of apparent degradation rates depended on the energy barriers for the formation of disaccharide-based alkoxyl radicals. Moreover, energy barriers for homolytic scissions of glucosidic C1-O or C7-O sites of these alkoxyl radicals ranked in the sequence: α-(1 → 2) ≈ α-(1 → 3) < α-(1 → 4) < ß-(1 → 4) < α-(1 → 6) < α-(1 → 1) glucosidic bonds. This study helps to explain the mechanisms of carbohydrate degradation by free radicals.


Assuntos
Álcoois , Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Glucosídeos , Dissacarídeos/química , Maltose/metabolismo , Sacarose/química , Raios Ultravioleta , Oxirredução , Cinética , Poluentes Químicos da Água/química
3.
Chemistry ; 30(15): e202304047, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38180821

RESUMO

Glycans are central to information content and regulation in biological systems. These carbohydrate molecules are active either as oligo- or polysaccharides, often in the form of glycoconjugates. The monosaccharide entities are joined by glycosidic linkages and stereochemical arrangements are of utmost importance in determining conformation and flexibility of saccharides. The conformational preferences and population distributions at the glycosidic torsion angles φ and ψ have been investigated for O-methyl glycosides of three disaccharides where the substitution takes place at a secondary alcohol, viz., in α-l-Fucp-(1→3)-ß-d-Glcp-OMe, α-l-Fucp-(1→3)-α-d-Galp-OMe and α-d-Glcp-(1→4)-α-d-Galp-OMe, corresponding to disaccharide structural elements present in bacterial polysaccharides. Stereochemical differences at or adjacent to the glycosidic linkage were explored by solution state NMR spectroscopy using one-dimensional 1 H,1 H-NOESY NMR experiments to obtain transglycosidic proton-proton distances and one- and two-dimensional heteronuclear NMR experiments to obtain 3 JCH transglycosidic coupling constants related to torsion angles φ and ψ. Computed effective proton-proton distances from molecular dynamics (MD) simulations showed excellent agreement to experimentally derived distances for the α-(1→3)-linked disaccharides and revealed that for the bimodal distribution at the ψ torsion angle for the α-(1→4)-linked disaccharide experiment and simulation were at variance with each other, calling for further force field developments. The MD simulations disclosed a highly intricate inter-residue hydrogen bonding pattern for the α-(1→4)-linked disaccharide, including a nonconventional hydrogen bond between H5' in the glucosyl residue and O3 in the galactosyl residue, supported by a large downfield 1 H NMR chemical shift displacement compared to α-d-Glcp-OMe. Comparison of population distributions of the glycosidic torsion angles φ and ψ in the disaccharide entities to those of corresponding crystal structures highlighted the potential importance of solvation on the preferred conformation.


Assuntos
Glicosídeos , Simulação de Dinâmica Molecular , Glicosídeos/química , Prótons , Configuração de Carboidratos , Carboidratos , Espectroscopia de Ressonância Magnética , Dissacarídeos/química
4.
Anal Methods ; 16(4): 566-575, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38189556

RESUMO

Chondroitin sulphate (CS) and dermatan sulphate are negatively charged linear heteropolysaccharides. These glycosaminoglycans (GAG) are involved in cellular signalling via binding to growth factors. CS is expressed in a range of tissue and biological fluids and is highly expressed in the placenta. There is evidence that decorin; a CS proteoglycan is significantly decreased in pre-eclampsia and fetal growth restriction. It is considered that GAG chain composition may influence cellular processes that are altered in pre-eclampsia. The goal of the present study was to develop an LC-MS method with precolumn procainamide labelling for the disaccharide compositional analysis of CS. The method was used to investigate whether the disaccharide composition of placenta-extracted CS is altered in pre-eclampsia. The study revealed differential disaccharide compositions of placental chondroitin sulphate between pre-eclampsia and other pregnancy conditions. This suggests that the method may have diagnostic potential for pregnancy disorders. Furthermore, the findings suggest that CS sulphation might play a significant role in maternal labour.


Assuntos
Sulfatos de Condroitina , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Sulfatos de Condroitina/metabolismo , Procainamida , Dissacarídeos/análise , Dissacarídeos/química , Placenta/química , Placenta/metabolismo , Glicosaminoglicanos/análise
5.
Carbohydr Res ; 533: 108934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708795

RESUMO

Thio sugars are carbohydrate derivatives in which one or more oxygen atoms have been replaced with sulfur. Thio sugars are effective inhibitors of glycosylases, have considerable therapeutic potential, and are used as drugs in the treatment of diabetes and infectious diseases. The development of this branch of carbohydrate chemistry would not be possible without the development of novel methods for its synthesis and the analysis of their biochemical properties. In this Review Article, we summarize our findings on the biological properties of a collection of thio sugars and their derivatives synthesized by the Witczak and Bielski team using their original methods based on the Michael addition of sugar thiols to levoglucosenone.


Assuntos
Dissacarídeos , Tioaçúcares , Dissacarídeos/farmacologia , Dissacarídeos/química
6.
Phys Chem Chem Phys ; 25(32): 21215-21226, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534799

RESUMO

Disaccharides are well known to be efficient stabilizers of proteins, for example in the case of lyophilization or cryopreservation. However, although all disaccharides seem to exhibit bioprotective and stabilizing properties, it is clear that trehalose is generally superior compared to other disaccharides. The aim of this study was to understand this by comparing how the structural and dynamical properties of aqueous trehalose and sucrose solutions influence the protein myoglobin (Mb). The structural studies were based on neutron and X-ray diffraction in combination with empirical potential structure refinement (EPSR) modeling, whereas the dynamical studies were based on quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The results show that the overall differences in the structure and dynamics of the two systems are small, but nevertheless there are some important differences which may explain the superior stabilizing effects of trehalose. It was found that in both systems the protein is preferentially hydrated by water, but that this effect is more pronounced for trehalose, i.e. trehalose forms less hydrogen bonds to the protein surface than sucrose. Furthermore, the rotational motion around dihedrals between the two glucose rings of trehalose is slower than in the case of the dihedrals between the glucose and fructose rings of sucrose. This leads to a less perturbed protein structure in the case of trehalose. The observations indicate that an aqueous environment closest to the protein molecules is beneficial for an efficient bioprotective solution.


Assuntos
Sacarose , Trealose , Trealose/química , Sacarose/química , Dissacarídeos/química , Proteínas , Água/química , Glucose
7.
Inorg Chem ; 62(33): 13212-13220, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37552525

RESUMO

In this study, we have used [1H, 15N] NMR spectroscopy to investigate the interactions of the trinuclear platinum anticancer drug triplatin (1) (1,0,1/t,t,t or BBR3464) with site-specific sulfated and carboxylated disaccharides. Specifically, the disaccharides GlcNS(6S)-GlcA (I) and GlcNS(6S)-IdoA(2S) (II) are useful models of longer-chain glycosaminoglycans (GAGs) such as heparan sulfate (HS). For both the reactions of 15N-1 with I and II, equilibrium conditions were achieved more slowly (65 h) compared to the reaction with the monosaccharide GlcNS(6S) (9 h). The data suggest both carboxylate and sulfate binding of disaccharide I to the Pt with the sulfato species accounting for <1% of the total species at equilibrium. The rate constant for sulfate displacement of the aqua ligand (kL2) is 4 times higher than the analogous rate constant for carboxylate displacement (kL1). There are marked differences in the equilibrium concentrations of the chlorido, aqua, and carboxy-bound species for reactions with the two disaccharides, notably a significantly higher concentration of carboxylate-bound species for II, where sulfate-bound species were barely detectable. The trend mirrors that reported for the corresponding dinuclear platinum complex 1,1/t,t, where the rate constant for sulfate displacement of the aqua ligand was 3 times higher than that for acetate. Also similar to what we observed for the reactions of 1,1/t,t with the simple anions, aquation of the sulfato group is rapid, and the rate constant k-L2 is 3 orders of magnitude higher than that for displacement of the carboxylate (k-L1). Molecular dynamics calculations suggest that extra hydrogen-bonding interactions with the more sulfated disaccharide II may prevent or diminish sulfate binding of the triplatin moiety. The overall results suggest that Pt-O donor interactions should be considered in any full description of platinum complex cellular chemistry.


Assuntos
Heparitina Sulfato , Platina , Ligantes , Heparitina Sulfato/química , Dissacarídeos/química , Sulfatos/química
8.
Phys Chem Chem Phys ; 25(33): 22179-22194, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565323

RESUMO

Determining carbohydrate structures, such as their compositions, linkage positions, and in particular the anomers and stereoisomers, is a great challenge. Isomers of different anomers or stereoisomers have the same sequences of chemical bonds, but have different orientations of some chemical bonds which are difficult to be distinguished by mass spectrometry. Collision-induced dissociation (CID) tandem mass spectroscopy (MS/MS) is a widely used technique for characterizing carbohydrate structures. Understanding the carbohydrate dissociation mechanism is important for obtaining the structural information from MS/MS. In this work, we studied the CID mechanism of galactose-N-acetylgalactosamine (Gal-GalNAc) and glucose-N-acetylglucosamine (Glc-GlcNAc) disaccharides with 1→3 and 1→4 linkages. For Gal-GalNAc disaccharides, the CID mass spectra of sodium ion adducts show significant difference between the α- and ß-anomers of GalNAc at the reducing end, while no difference in the CID mass spectra between two anomers of Glc-GlcNAc disaccharides was found. Quantum chemistry calculations show that for Gal-GalNAc disaccharides, the difference of the dissociation barriers between dehydration and glycosidic bond cleavage is significantly small in the ß-anomer compared to that in the α-anomer; while these differences are similar between the α- and ß-anomers of Glc-GlcNAc disaccharides. These differences can be attributed to the different orientations of hydroxyl and N-acetyl groups located at GalNAc and GlcNAc. The calculation results are consistent with the CID spectra of isotope labelled disaccharides. Our study provides an insight into the CID of 1→3 and 1→4 linked Gal-GalNAc and Glc-GlcNAc disaccharides. This information is useful for determining the anomeric configurations of GalNAc in oligosaccharides.


Assuntos
Dissacarídeos , Espectrometria de Massas em Tandem , Dissacarídeos/química , Oligossacarídeos/química , Carboidratos , Glucose
9.
Int J Biol Macromol ; 247: 125821, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37467830

RESUMO

Diabetes mellitus causes a wide range of metabolic derangements with multiple organ damage. The microvascular and macrovascular complications of diabetes result partly from the damage to the glycosaminoglycans (GAG) in the basement membrane. GAGs are negatively charged polysaccharides with repeating disaccharide units. They play a significant role in cellular proliferation and signal transduction. Destruction of extracellular matrix results in diseases in various organs including myocardial fibrosis, retinal damage and nephropathy. To substitute the natural GAGs pharmacotherapeutically, they have been synthesized by using basic disaccharide units. Among the four classes of GAGs, heparin is the most widely studied. Recent studies have revealed multiple significant GAG-protein interactions suggesting their use for the management of diabetic complications. Moreover, they can act as biomarkers for assessing the disease progression. A number of GAG-based therapeutic agents are being evaluated for managing diabetic complications. The current review provides an outline of the role of GAGs in diabetes while covering their interaction with different molecular players that can serve as targets for the diagnosis, management and prevention of diabetes and its complications. The medicinal chemistry and clinical pharmacotherapeutics aspects have are covered to aid in the establishment of GAG-based therapies as a possible avenue for diabetes.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Humanos , Glicosaminoglicanos/química , Diabetes Mellitus/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Heparina , Dissacarídeos/química , Heparitina Sulfato/metabolismo
10.
J Biol Chem ; 299(5): 104692, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031818

RESUMO

Chondroitinase ABC-type I (CSase ABC I), which can digest both chondroitin sulfate (CS) and dermatan sulfate (DS) in an endolytic manner, is an essential tool in structural and functional studies of CS/DS. Although a few CSase ABC I have been identified from bacteria, the substrate-degrading pattern and regulatory mechanisms of them have rarely been investigated. Herein, two CSase ABC I, IM3796 and IM1634, were identified from the intestinal metagenome of CS-fed mice. They show high sequence homology (query coverage: 88.00%, percent identity: 90.10%) except for an extra peptide (Met1-His109) at the N-terminus in IM1634, but their enzymatic properties are very different. IM3796 prefers to degrade 6-O-sulfated GalNAc residue-enriched CS into tetra- and disaccharides. In contrast, IM1634 exhibits nearly a thousand times more activity than IM3796 and can completely digest CS/DS with various sulfation patterns to produce disaccharides, unlike most CSase ABC I. Structure modeling showed that IM3796 did not contain an N-terminal domain composed of two ß-sheets, which is found in IM1634 and other CSase ABC I. Furthermore, deletion of the N-terminal domain (Met1-His109) from IM1634 caused the enzymatic properties of the variant IM1634-T109 to be similar to those of IM3796, and conversely, grafting this domain to IM3796 increased the similarity of the variant IM3796-A109 to IM1634. In conclusion, the comparative study of the new CSase ABC I provides two unique tools for CS/DS-related studies and applications and, more importantly, reveals the critical role of the N-terminal domain in regulating the substrate binding and degradation of these enzymes.


Assuntos
Condroitina ABC Liase , Sulfatos de Condroitina , Animais , Camundongos , Bactérias/enzimologia , Condroitina ABC Liase/química , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/química , Dissacarídeos/química , Peptídeos , Especificidade por Substrato
11.
Anal Methods ; 15(11): 1461-1469, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36876452

RESUMO

The fine structure of heparan sulfate (HS), the glycosaminoglycan polysaccharide component of cell surface and extracellular matrix HS proteoglycans, coordinates the complex cell signalling processes that control homeostasis and drive development in multicellular animals. In addition, HS is involved in the infection of mammals by viruses, bacteria and parasites. The current detection limit for fluorescently labelled HS disaccharides (low femtomole; 10-15 mol), has effectively hampered investigations of HS composition in small, functionally-relevant populations of cells and tissues that may illuminate the structural requirements for infection and other biochemical processes. Here, an ultra-high sensitivity method is described that utilises a combination of reverse-phase HPLC, with tetraoctylammonium bromide (TOAB) as the ion-pairing reagent and laser-induced fluorescence detection of BODIPY-FL-labelled disaccharides. The method provides an unparalleled increase in the sensitivity of detection by ∼six orders of magnitude, enabling detection in the zeptomolar range (∼10-21 moles; <1000 labelled molecules). This facilitates determination of HS disaccharide compositional analysis from minute samples of selected tissues, as demonstrated by analysis of HS isolated from the midguts of Anopheles gambiae mosquitoes that was achieved without approaching the limit of detection.


Assuntos
Culicidae , Dissacarídeos , Animais , Dissacarídeos/análise , Dissacarídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Heparitina Sulfato/análise , Heparitina Sulfato/química , Mamíferos
12.
J Am Soc Mass Spectrom ; 34(4): 627-639, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971653

RESUMO

Carbohydrates are ubiquitous in nature but are among the least conserved biomolecules in life. These biopolymers pose a particular challenge to analytical chemists because of their high diversity and structural heterogeneity. In addition, they contain many isomerisms that complicate their structural characterization, notably by mass spectrometry. The tautomerism of the constitutive subunits is of particular interest. A given cyclized monosaccharide unit can take two forms: a most common 6-membered ring (pyranose, p) and a more flexible 5-membered ring (furanose, f). The tautomers impact the biological properties of polysaccharides, resulting in interesting properties of the derived oligosaccharides. From an analytical point of view, the impact of tautomerism on the gas-phase behavior of ions has scarcely been described in the literature. In this work, we study the behavior of Galf-containing oligosaccharides, ionized as [M+Li]+ species, under collisional dissociation (CID) conditions using high-resolution and multistage ion mobility (IMS) on a Cyclic IMS platform. In the first part of this work, we studied whether disaccharidic fragments released from Galf-containing (Gal)1(Man)2 trisaccharides (and their Galp counterpart) would match the corresponding disaccharide standards, and─despite the fragments generally being a good match─we showed the possibility of Galf migrations and other unidentified alterations in the IMS profile. Next, we expanded on these unknown features using multistage IMS and molecular dynamics, unveiling the contributions of additional gas-phase conformers in the profile of fragments from a Galf-containing trisaccharide compared with the corresponding disaccharides.


Assuntos
Carboidratos , Oligossacarídeos , Humanos , Espectrometria de Massas/métodos , Oligossacarídeos/química , Polissacarídeos , Dissacarídeos/química , Trissacarídeos , Monossacarídeos , Íons
13.
J Mass Spectrom ; 58(3): e4908, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36799777

RESUMO

Biglycan (BGN), a small leucine-rich repeat proteoglycan, is involved in a variety of pathological processes including malignant transformation, for which the upregulation of BGN was found related to cancer cell invasiveness. Because the functions of BGN are mediated by its chondroitin/dermatan sulfate (CS/DS) chains through the sulfates, the determination of CS/DS structure and sulfation pattern is of major importance. In this study, we have implemented an advanced glycomics method based on ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS) to characterize the CS disaccharide domains in BGN. The high separation efficiency and sensitivity of this technique allowed the discrimination of five distinct CS disaccharide motifs, of which four irregulated in their sulfation pattern. For the first time, trisulfated unsaturated and bisulfated saturated disaccharides were found in BGN, the latter species documenting the non-reducing end of the chains. The structural investigation by IMS MS/MS disclosed that in one or both of the CS/DS chains, the non-reducing end is 3-O-sulfated GlcA in a rather rare bisulfated motif having the structure 3-O-sulfated GlcA-4-O-sulfated GalNAc. Considering the role played by BGN in cancer cell spreading, the influence on this process of the newly identified sequences will be investigated in the future.


Assuntos
Sulfatos de Condroitina , Espectrometria de Massas em Tandem , Sulfatos de Condroitina/química , Biglicano , Dissacarídeos/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Glicômica
14.
Glycoconj J ; 40(2): 169-178, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36749437

RESUMO

Dried leech (Whitmania pigra whitman) has been widely used as a traditional animal-based Chinese medicine. Dried leech extracts have been reported to have various biological activities that are often associated with mammalian glycosaminoglycans. However, their presence and possible structural characteristics within dried leech were previously unknown. In this study, glycosaminoglycans were isolated from dried leech for the first time and their structures were analyzed by the combination of Fourier-transform infrared spectroscopy, liquid chromatography-ion trap/time-of-flight mass spectrometry and polyacrylamide gel electrophoresis. Heparan sulfate and chondroitin sulfate/dermatan sulfate were detected in dried leech with varied disaccharide compositions and possess a heterogeneous structure. Heparan sulfate species possess an equal amount of total 2-O-sulfated, N-sulfated and acetylated disaccharides, while chondroitin sulfate /dermatan sulfate contain high content of 4-O-sulfated disaccharides. Also, the quantitative analysis revealed that the contents of heparan sulfate and chondroitin/dermatan sulfate in dried leech varied significantly, with chondroitin/dermatan sulfate being by far the most abundant. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of the dried leech. Furthermore, leech glycosaminoglycans showed a strong ABTS radical scavenging ability, which suggests the potential of leech polysaccharides for exploitation in the nutraceutical and pharmaceutical industries.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Animais , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Antioxidantes/farmacologia , Heparitina Sulfato/química , Mamíferos , Dissacarídeos/química
15.
Methods Mol Biol ; 2619: 71-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662463

RESUMO

Glycosaminoglycans (GAGs) are built up of repeating disaccharide units resulting in long, linear polysaccharide chains. In most classes of GAGs, sulfation and epimerization complicate the structure of the chain and influence biochemical functions. The most widespread way of their investigation by instrumental analytical techniques is to degrade them into the constituent disaccharide building blocks, followed by capillary electrophoresis or high-performance liquid chromatography (HPLC) separation. The analysis of GAG disaccharides with varying sulfation degrees poses a real challenge both from chromatographic and mass spectrometric (MS) points of view. This necessitates the constant improvement of their analytical methodology. In this chapter, an optimized workflow will be discussed for the sample preparation and subsequent HPLC-MS characterization of tissue-derived chondroitin sulfate and heparan sulfate.


Assuntos
Sulfatos de Condroitina , Heparitina Sulfato , Sulfatos de Condroitina/química , Cromatografia Líquida de Alta Pressão/métodos , Heparitina Sulfato/química , Glicosaminoglicanos/química , Dissacarídeos/química
16.
Phys Chem Chem Phys ; 25(4): 3042-3060, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36607620

RESUMO

D-Mannose is a structural component in N-linked glycoproteins from viruses and mammals as well as in polysaccharides from fungi and bacteria. Structural components often consist of D-Manp residues joined via α-(1→2)-, α-(1→3)-, α-(1→4)- or α-(1→6)-linkages. As models for these oligo- and polysaccharides, a series of mannose-containing disaccharides have been investigated with respect to conformation and dynamics. Translational diffusion NMR experiments were performed to deduce rotational correlation times for the molecules, 1D 1H,1H-NOESY and 1D 1H,1H-T-ROESY NMR experiments were carried out to obtain inter-residue proton-proton distances and one-dimensional long-range and 2D J-HMBC experiments were acquired to gain information about conformationally dependent heteronuclear coupling constants across glycosidic linkages. To attain further spectroscopic data, the doubly 13C-isotope labeled α-D-[1,2-13C2]Manp-(1→4)-α-D-Manp-OMe was synthesized thereby facilitating conformational analysis based on 13C,13C coupling constants as interpreted by Karplus-type relationships. Molecular dynamics simulations were carried out for the disaccharides with explicit water as solvent using the additive CHARMM36 and Drude polarizable force fields for carbohydrates, where the latter showed broader population distributions. Both simulations sampled conformational space in such a way that inter-glycosidic proton-proton distances were very well described whereas in some cases deviations were observed between calculated conformationally dependent NMR scalar coupling constants and those determined from experiment, with closely similar root-mean-square differences for the two force fields. However, analyses of dipole moments and radial distribution functions with water of the hydroxyl groups indicate differences in the underlying physical forces dictating the wider conformational sampling with the Drude polarizable versus additive C36 force field and indicate the improved utility of the Drude polarizable model in investigating complex carbohydrates.


Assuntos
Dissacarídeos , Simulação de Dinâmica Molecular , Animais , Dissacarídeos/química , Manose , Glicosídeos/química , Prótons , Carboidratos , Espectroscopia de Ressonância Magnética , Polissacarídeos/química , Água , Mamíferos
17.
Anal Chem ; 95(4): 2213-2220, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36635092

RESUMO

Carbohydrates play critically important roles in energy supply and biological functions in living systems. However, it has been a great challenge to identify saccharides and distinguish their isomers because they have highly similar structures and many possible positions for glycosidic linkages. In this work, an ambient ionization tandem mass spectrometry method was developed to characterize disaccharide structural isomers with in situ methylation. The direct analysis in real time ion source can be used to facilitate the methylation reaction of disaccharides with tetramethylammonium hydroxide. The hydroxyl groups of disaccharides can be methylated instantaneously, and the products can be ionized at the same time. The methylated product ions from full scan mass spectrometry (MS) and tandem MS can be used to distinguish a variety of disaccharide structural isomers with different glycosidic linkages, compositions, and configurations. Characteristic marker ions were discovered, and they can be used for the assignment of linkage type and identification of specific isomeric forms. The method was used for the direct identification of disaccharide isomers from real commercial products such as honey, wine, and milk without complex sample pretreatment or chromatographic separation.


Assuntos
Dissacarídeos , Espectrometria de Massas em Tandem , Dissacarídeos/química , Espectrometria de Massas em Tandem/métodos , Metilação , Carboidratos , Íons , Isomerismo , Glicosídeos , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Int J Pharm Compd ; 27(1): 78-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720065

RESUMO

The objective of this study was to prepare agglomerated isomalt by using the melt granulation process. This method involved the use of 99.5% of isomalt with the meltable binder glyceryl monostearate in a concentration of 0.5%. Glyceryl monostearate has a melting point of 50°C to 55°C, therefore, glyceryl monostearate was melted at its melting point and isomalt powder was blended with it to break the mass into agglomerates. The agglomerates were cooled to room temperature and were then screened to obtain granules of the desired size. The Fourier Transform Infrared Spectroscopy studies confirmed that the chemical structure of isomalt was not changed before and after the melt granulation process. A differential scanning calorimetry study showed that there was no appearance of more new peaks or disappearance of  one or more peaks corresponding to those of the isomalt powder and agglomerated isomalt, which showed no changes in the structure of the isomalt powder before and after the agglomeration process. The agglomerated isomalt and galenIQ 721 showed almost identical solubility profiles for g of solute per 100 g of solution at different temperatures. The scanning electron microscopy analysis of agglomerated isomalt showed promising results for the preparation of agglomerates of isomalt with glyceryl monostearate. The flow properties of the agglomerated isomalt compared with the galenIQ 721 and pure isomalt powder and melt granulation process showed promising results for agglomerated isomalt. The melt granulation process showed promising results to prepare agglomerates of the isomalt with the meltable binder glyceryl monostearate.


Assuntos
Dissacarídeos , Excipientes , Pós , Dissacarídeos/química , Excipientes/química , Álcoois Açúcares/química , Solubilidade
19.
Biochemistry ; 62(2): 429-436, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35881507

RESUMO

Flavin-dependent carbohydrate oxidases are valuable tools in biotechnological applications due to their high selectivity in the oxidation of carbohydrates. In this study, we report the biochemical and structural characterization of a recently discovered carbohydrate oxidase from the bacterium Ralstonia solanacearum, which is a member of the vanillyl alcohol oxidase flavoprotein family. Due to its exceptionally high activity toward N-acetyl-d-galactosamine and N-acetyl-d-glucosamine, the enzyme was named N-acetyl-glucosamine oxidase (NagOx). In contrast to most known (fungal) carbohydrate oxidases, NagOx could be overexpressed in a bacterial host, which facilitated detailed biochemical and enzyme engineering studies. Steady state kinetic analyses revealed that non-acetylated hexoses were also accepted as substrates albeit with lower efficiency. Upon determination of the crystal structure, structural insights into NagOx were obtained. A large cavity containing a bicovalently bound FAD, tethered via histidyl and cysteinyl linkages, was observed. Substrate docking highlighted how a single residue (Leu251) plays a key role in the accommodation of N-acetylated sugars in the active site. Upon replacement of Leu251 (L251R mutant), an enzyme variant was generated with a drastically modified substrate acceptance profile, tuned toward non-N-acetylated monosaccharides and disaccharides. Furthermore, the activity toward bulkier substrates such as the trisaccharide maltotriose was introduced by this mutation. Due to its advantage of being overexpressed in a bacterial host, NagOx can be considered a promising alternative engineerable biocatalyst for selective oxidation of monosaccharides and oligosaccharides.


Assuntos
Dissacarídeos , Oxirredutases , Oxirredutases/metabolismo , Oxirredução , Dissacarídeos/química , Domínio Catalítico , Monossacarídeos , Flavina-Adenina Dinucleotídeo/metabolismo
20.
FEBS J ; 290(9): 2379-2393, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36478634

RESUMO

O-sulfated N-acetyl-d-galactosamine (GalNAc) residues in chondroitin sulfate (CS) play a crucial role in chondroitinase ABC I (cABC-I) activity. CSA containing mainly 4-O-monosulfated GalNAc was a good substrate for the enzyme, but not CSE containing mainly 4,6-O-disulfated GalNAc [GalNAc(4S,6S)]. Each CS isomer exhibits structural heterogeneity; CSE has di-sulfated disaccharide units and mono-sulfated disaccharide units. Disaccharide composition analysis of digested products revealed that mono-sulfated disaccharide units in CSE contributed to the enzyme reactivity. Although enough substrate (CSA) was present in mixtures of CSA and CSE for reaction, the reactivity was reduced depending on the amount of CSE in the mixture. These results suggested that CSE is not only resistant to enzyme digestion but also attenuates enzyme activity. To understand the mechanism of action, crystallography of cABC-I in complex with unsaturated CSE-disaccharide, ΔDi-(4,6)S, was performed. Both 4-O- and 6-O-sulfate groups in ΔDi-(4,6)S interact with Arg500, suggesting that there was a greater interaction between ΔDi-(4,6)S and Arg500 than between mono-sulfated disaccharides and Arg500. Besides, this interaction attenuated enzyme activity by interfering with a function of Arg500, which is the charge neutralization of the carboxy group of D-glucuronic acid (GlcA) residues in CS. When interacting with the CSE-disaccharide unit [GlcAß1-3GalNAc(4S,6S)] in CS, cABC-I cannot interact with other CS-disaccharide units until it has digested the CSE-disaccharide unit. The low reactivity of cABC-I with CSE is attributable to two suggested factors: (a) resistance of E-units in CSE molecules to digestion by cABC-I, and (b) tendency of E-units in CSE molecules to attenuate cABC-I activity.


Assuntos
Sulfatos de Condroitina , Dissacarídeos , Dissacarídeos/química , Sulfatos de Condroitina/química , Condroitina ABC Liase , Cristalografia , Sulfatos , Anticorpos , Galactosamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...